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it is necessary that two waves radiate from the discontinuity. This occurs when the velo- 
city upstream of the discontinuity is higher than the speed of sound, while the velocity 
downstream of it is lower than the speed of sound, i.e. v1 > a, and v2 < a2. The condi- 

tion v1 > a, implies that 

vrz> a$ + a2p,Et’ / 4 ne or - Q + e2a*2 / (a* + 1) < - y (3.1) 

The left-hand side of the last inequality contains a quantity which is the tangent of the 

slope of the curve which represents the equation of conservation of momenta, while that 

in the right-hand side is the tangent of the shock adiabate at point 1/ = 1, P = 1. It 
follows from (3.1) that in the case of evolutionary waves the line corresponding to the 
equation of conservation of momenta at point li =- 1, P = 1 for V < 1 lies above the 

shock adiabate and must always intersect the latter in the interval 1 / li <: 1/ < 1. We 
have thus established that in electrohydrodynamics in the case of linear dependence of 

permittivity on density shock waves are always compression waves. The normal compo- 
nent of the elctric field downstream of the wave front is smaller than the normal com- 

ponent of that field upstream of the front. 

It will be seen from (2.1) that for V < i the curve of the shock adiabate lies higher 

than the conventional gasdynamic adiabate, i. e. it is in region ,!? > s,, where Sr is the 

entropy at point P = 1, V = 1. The increase of entropy at the shock also shows that the 

latter is a compression shock. 
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The stability of a Couette flow of incompressible non-Newtonian second-order 

fluid at high Reynolds numbers [l] is considered within the limits of the linear 
theory of hydrodynamic stability. Unlike the Couette flow of a Newtonian (first- 
order) fluid which according to the linear theory is stable, the flow considered 
here may loose its stability even in the linear approximation. 

The problem of hydrodynamic stability of simple flows of non-Newtonian fluids was 
considered in a fairly large numer of publications [2-41 in which the effect of elastic 
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properties of non-Newtonian fluids on stability was examined. Stability fluctuations in- 
duced by small deviations from Newtonian properties in unstable and in conventional 
Newtonian fluid flows were analyzed in [ 2, 31. The stability of a plane -parallel Couette 

flow was investigated in [4] with the use of the linear theory of stability, where the de- 
stabilizing effect of pronounced elastic properties of fluid at low Reynolds numbers on 

the flow was pointed out. 

The problem of stability of the Couette flow at high Reynolds numbers is investigated 

here in the case of an inelastic second-order fluid whose viscous stress tensor is defined 

by (‘1 

where v is the coefficient of kinematic viscosity, p is the fluid density, and a, b and 

15 are coefficients of normal stresses. 

1, The stream function 4 of a plane isothermic flow of an incompressible viscous 
second -order fluid satisfies the equation 

Let us consider the stability of a flow whose velocity profile U (y) with respect to 

small perturbations of the stream function 9’ is of the form 
$’ =; f (&) ew=-c~) (1.2) 

Linearizing Eq. (1.1) and using (1.2). for f (y) in dimensionless coordinates we obtain 

[U - c f @ -I- 19 kaaUl D2f - Ii -I- a2k (fi + y)] Vf = 0.3) 

- 
( 
k@U .-t_ cky + A) PD2f + kPf U” + k (3 + r) (UPf - U”j)“, D2 = d74-h~2 - a9 

where the dimensionless constants p and y (of the order of unity) depend on the selec- 
tion of a particular statistical model for the fluid, nz is the mass of a fluid molecule, 
2’ is the fluid temperature measured in energy units ([Tl= erg), k is a dimensionless 

parameter which defines the ratio of non-Newtonian to inertial forces in the fluid, L is 
a characteristic dimension, and uO is the flow velocity. 

Let us consider the stability of the Couette flow u = y with respect to perturbations 
which satisfy the condition 0 < a ,- 1. We set b = 0 in Eq, (1.3). which is valid for 
some statistical models of fluid. Then for high Reynolds numbers and k > 1 I R the equa- 
tion of perturbations becomes 

(9 - c + ylia2y) u”f = - cky D2D2f + yk (yDzf)” (1.4) 

*) Savchenko, V. A., Candidate’s dissertation, Rostov-on-Don, 1972, 



884 E.Ia.KLimenk.ov and L.V.Poluianob 

A transition to limit R -+ 03 does not in this case correspond to any 
tions [5]. since terms containing higher derivatives do not vanish. 

At the channel walls 8 = t Y, perturbations of the longitudinal 

cities vanish, hence 
f c-t ‘iz) = f’ (+- ‘/2) = 0 

particular perturba - 

and transverse velo- 

(1.5) 

2. The general solution of the linear equation (1.4) can be written in the form of 
linearly independent solutions fi(i = 1.. . . , 4) 

I = i Q; (Y)B ci = const (2.1) 
i-1 

Owing to the homogeneity of boundary conditions (1.5) the solution (2.1) is nontrivial, 
if the determinant 

i fi (‘:z) fi’ (‘it?) fi f- ‘iJ fi’ f- V& I = 0 (2.2) 

The first pair of exact nonlinear solutions is of the simple form 

fl (Y) = eav, fz (y) = e--a” (2.3) 

Let us consider flows which satisfy the condition kg 1 and seek the second pair of 

solutions in the form of the asymptotic series 

f = fo h) + 4 W) fl @I) + .-. ri = b - 4 I A W)t A, A, = 0 (1) (2.4) 

Note that c , and consequently n can be complex. Substituting (2.4) into (1.4) and 

using the principle of minimum degeneration of equations [5], in the zero approximation 
we have 

A Ok) = l’?k, o q o o 
f” + -5 f’_ f” = 0 (2.5) 

The fundamental system of linearly independent solutions of Eq. (2.5) is of the form 

j(l) = 1, 0 0 
f(Z) zzz q , ft3) = T,Ei (7,) - en 0 (2.6) 

il 

f6”’ = l-p (-11) + .P, Et(q)= ’ et f 
s 

As the second pair of solutions to supplement the pair (2:;) it is necessary to take f$ 

and foc4), since solutions f,(l) and f&s) are linear combinations of expansions of solutions 

f, and fa for 1~ - cl -zg 1. Solutions fof3) and f,(a) represent multiple-valued functions 

with a transcendental branching point for n = 0. For these solutions to have regular 

asymptotics for 1 y -- c 1 > VTi, i.e. 
1 f3N&%p -&- , fs-- ( ) i y-c exp \ -- ~~~ 1 

it is necessary to separate the required branch of the integral exponential function. For 
this it is necessary to make a cut along the negative imaginary semiaxis in the plane of 
the complex variable 9, which means that Q must satisfy the condition 

-n/Z<argn<3n/Z (2‘ 7) 

Equalities (2.3) and (2.6) yield the required system of linearly independent solution 
of Eq. (1.4). which is then used in the characteristic equation (2.2). 

3. Let us prove that the considered mode of the Couette flow is unstable. For this 
we shall consider the case of 
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It is seen that the first two rows of the determinant (2.2) are of the order of nnity . 
Then, depending on which of solutions f0c3) or f&*) is specified as bounded for ~~[---‘ls, 

lizI and k-+0 , either f,P) or f,(a) will be present in the characteristic equation, and 
there are two possible waves. Let us consider the one which appears when boundedness 
of f,(l) is specified. This requirement is equivalent to the fulfilment of the following 

relationship: 
+. = - if, + e d~7;; 048-i G 1) 

and it also corresponds to the condition cI. < 0, Retaining in the determinant (2.2) the 

term of the highest order of magnitude, we obtain 

g (11~) fr’ (-- ‘is) sh cc = 6 (3.2) 

Only the second of the three cofactors in the left-hand part can vanish, while the first 

by virtue of condition (3.1) is equal to vg exp (1 / v/rk) [I + 0 ( f/rk)] and for 

k --f 0 tends to 00 . Hence, as previously stated, the characterisitc equation has only a 
limited solution. With the use of solutions (2.6). we obtain 

Only the roots of (3.3) which by virtue of condition (3.1) satisfy the inequality 

are of interest. 
Re [(‘/z-f- G)f ??] >0 (3.4) 

Note that, since Eq, (3.3) has no real roots. the considered flow with the restrictions 

defined above does not allow indifferent oscillations. Equation (3.3) has the following 

complex root : 
v/z + c) / I/g w 1.31 tw3t’i 

which satisfies the specified conditions. Thus the real and imaginary parts of c are, 

respectively, defined by the equalities 

CrN - I/% + 0.31 l/s + . . . . ci = 1.1 63 + . . . 

A positive ci implies that the considered wave is of the intensifying kind. Hence the 

Couetre flow of second-order fluid admits for R -+ CO increasing wave oscillations and 
is unstable (unlike the Couette flow of a Newtonian fluid which according to the linear 

theory remains stable). Note that the condition 1 Z$%= k p 1 I R imposed above means 
that in EQ. (1.4) the non-Newtonian properties of the fluid fk > 1 / He) play a decisive 
part and that the order of magnitude of inertial terms is higher than that of non-Newton- 

ian (I >> k), 
We note in conclusion that ci ---f U when k --3 U, which shows that with decreasing 

effect of non-Newtonian properties of the fluid the instability tends to vanish. Results 

of this investigation show that the destabilizing effect is not only due to the elastic pro- 
perties of the fluid, as inducated in [4], but also to its non-Newtonian properties, ifterms 
which are quadratic with respect to velocity are taken into account in the expression for 

the viscous stress tensor, 
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We consider the problem of determining the stresses in a thin, homogeneousdisc, 
weakened by N like holes situated at the same distance from the center and 

acted upon by a constant normal load applied along its periphery. Such a cyclic- 

ally symmetric problem was solved by Buivol in [l]. who reduced the Sherman 

integral equation [2, 33 along the boundary L of the region in question, to an 

equation along the part of L designated by I and lying within the angle 6, <; 
6 < B0 + z, where 7 = 2n / iv and 6 is the angular coordinate of the points of 

1 in the polar coordinate system chosen in the plane of the annulus in the usual 

manner, and 6, is arbitrary. 

Such an approach utilizes the symmetry of the problem when the resulting 
equations are solved numerically and, unIike other methods [4-S]. it does not 
impose any restrictions on the size and distribution of the holes, while a suitable 
choice of the norm in the method of least squares ensures uniform convergence 

of the complex potentials 9 (2) and 5) (z) and their derivatives right up to their 

boundaries. Unfort~ately, the paper [I] contains an error. The transformation 

of the function w (t) under a rotation by the angle r is determined with the 
accuracy of only up to its principal term, i.e. up to the limiting value of the 
function holomorphic outside the region in question (see p] for a representation 
of holomorphic functions in terms of the Cauchy integrals). Such a limiting value 
affects the form of (I, (z) and hence the result. In the present paper this value is 
determined with help of the condition of transformation of 9 (z) under rotation, 
used in [I]. 

It is proved that w (t) belongs to some subspace Was (I;, T) of the space 
wz’ (L), consnucted by taking into account the symmetry of the problem. The 
application of the method of least squares in ~23 (L, 7) leads to an economic 
computational scheme. We give numerical results for N = 4 in the case of dif- 
ferent disk-geometries. The method of solution can be easily extended to the 


